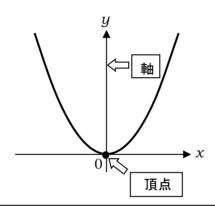
数学 I <後> 第1回レポート用スクーリング教材

- 2 次関数のグラフ (2) 「教科書: p86~p87]
 - 2次関数は、一般に

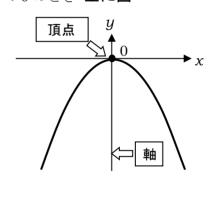
 $y = ax^2 + bx + c$

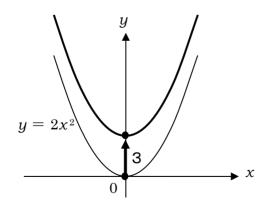
の形で表される。ただし、a、b、cは定数で、 $a \neq 0$ である。

- (1) この形の曲線を 放物線 という。
- (2) グラフは、原点を通り、 y軸 について対称な曲線である。
- (3) 対称軸となる直線を 軸 という。
- (4) 軸と放物線の交点を 頂点 という。
- (5)
 - ① a > 0 のとき **下に凸**



② a < 0 のとき 上に凸





 $y = 2x^2$ のグラフを

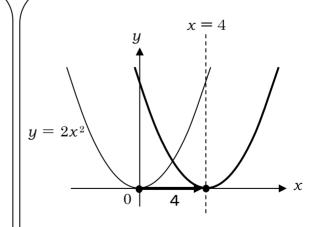
 x軸方向に
 0

 y軸方向に
 3

頂点の座標(0、3)

軸の方程式: **x** = 0

 $y = 2(x-4)^2 \mathcal{O}(5)^{-1}$



 $y = 2x^2$ のグラフを

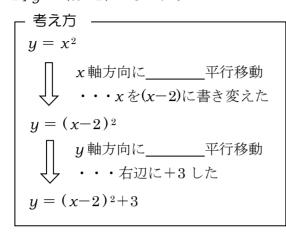
 x軸方向に
 4

 y軸方向に
 0

頂点の座標(4、0)

軸の方程式: x=4

- [例 1] $y = (x-2)^2 + 3$ のグラフ



よって、 $y = (x-2)^2 + 3$ のグラフは、 $y = x^2$ のグラフを、

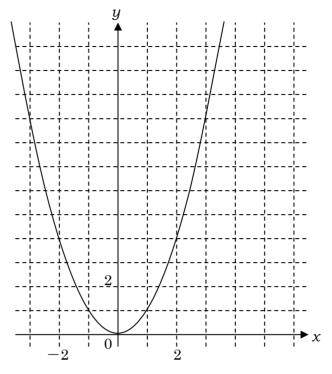
x 軸方向に_____

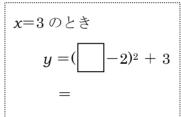
y 軸方向に_____

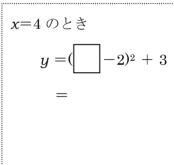
平行移動したものであり、

頂点の座標(____、___)

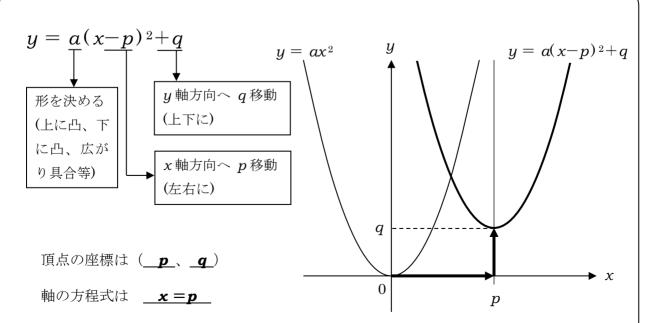
軸の方程式 _____ である。







 $-\mathbf{y} = \mathbf{a}(\mathbf{x} - \mathbf{p})^2 + \mathbf{q}$ のグラフ



	表すグラフをどのように平行移動したものか。また、 であるか、下に凸であるかを の中に答えなさい
(1) $y = (x-4)^2 + 5$ $(y = x^2)$	(2) $y = 2(x+2)^2 + 3$ $(y = 2x^2)$
x 軸方向に	x 軸方向に
y 軸方向に	y 軸方向に
頂点の座標	頂点の座標
軸の方程式	軸の方程式
に凸	[]
(3) $y = -(x-3)^2 - 1$ $(y = -x^2)$	(4) $y = -3(x+1)^2 - 4$ $(y = -3x^2)$
x 軸方向に	x 軸方向に
y 軸方向に	y 軸方向に
頂点の座標	頂点の座標
軸の方程式	軸の方程式
に凸	[] に凸
「練習2」 次の関数のグラフを,()内に示した	ように平行移動したとき,そのグラフを表す関数を

 $y = a(x-p)^2 + q$ の形で示しなさい。

(1) $y=x^2$ (x 軸方向に3, y 軸方向に-2)

(2) $y=2x^2$ (x 軸方向に-3, y 軸方向に6)

[練習3] 次の関数の頂点および軸を求め、グラフをかきなさい。

(1)
$$y = (x-3)^2-2$$

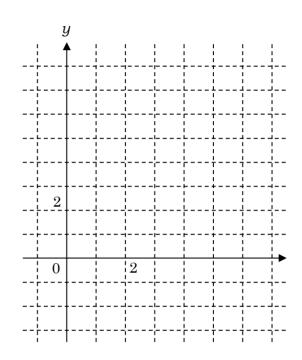
頂点の座標

軸の方程式:

X	0	1	2	3	4	5	6
x-3					1	2	
$(x-3)^2$					1	4	
$(x-3)^2-2$					-1	2	

$$x = 4$$
 のとき
 $y = (-3)^2 - 2$

$$x = 5$$
 のとき
 $y = (-3)^2 - 2$



(2) $y = -2(x+2)^2+1$

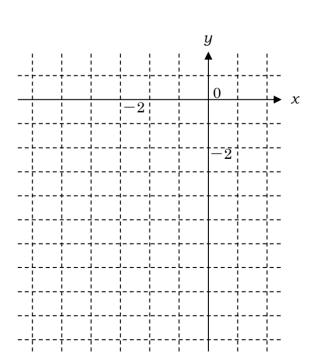
頂点の座標

軸の方程式:

X	-4	-3	-2	-1	0
x+2				1	2
$(x+2)^2$				1	4
$-2(x+2)^{2}$				-2	-8
$-2(x+2)^2+1$				-1	-7

$$x = -1$$
 のとき
 $y = -2(+2)^{2} + 1$

$$x = 0$$
 のとき
 $y = -2(+2)^2 + 1$



数学 I <後> 第1回レポート用スクーリング教材 | **解答例**|

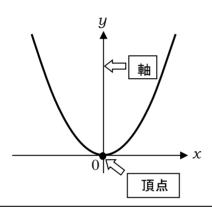
- -2 次関数のグラフ (2) [教科書: $p86 \sim p87$]
 - 2次関数は、一般に

 $y = ax^2 + bx + c$

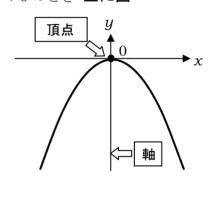
の形で表される。ただし、a、b、cは定数で、 $a \neq 0$ である。

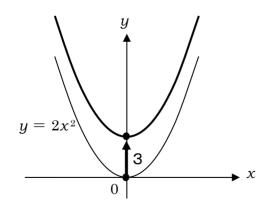
∠ u = ax² のグラフ —

- (1) この形の曲線を **放物線** という。
- (2) グラフは、原点を通り、 y軸 について対称な曲線である。
- (3) 対称軸となる直線を 軸 という。
- (4)軸と放物線の交点を 頂点 という。
- (5)
 - ① a > 0 のとき **下に凸**



② a < 0 のとき **上に凸**



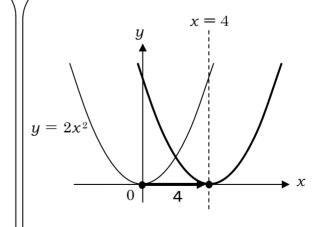


y軸方向に 3 5

頂点の座標(0、3)

軸の方程式: x = 0

 $y = 2(x - 4)^2 \mathcal{O} \mathcal{J} \mathcal{J} \mathcal{J}$



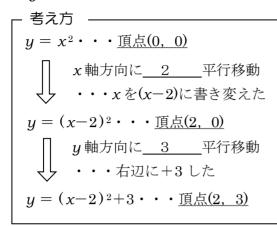
 $y = 2x^2$ のグラフを

x軸方向に 4 平行移動 y軸方向に 0

頂点の座標(4、0)

軸の方程式: x=4

[例 1]
$$y = (x-2)^2 + 3$$
 のグラフ



よって、 $y = (x-2)^2 + 3$ のグラフは、 $y = x^2$ のグラフを、

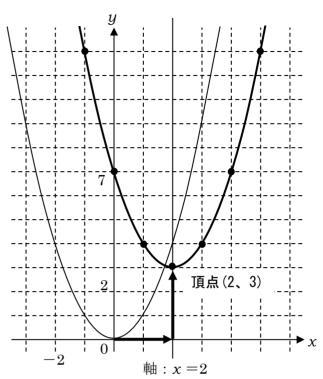
x軸方向に 2

y 軸方向に 3___

平行移動したものであり、

頂点の座標(2、3)

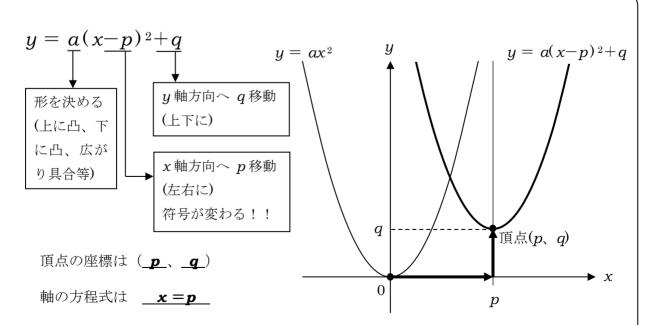
軸の方程式 x=2 である。



$$x=3$$
 のとき
 $y = (3-2)^2 + 3$
 $= 1^2 + 3$
 $= 1+3$
 $= 4$

$$x=4$$
 のとき
 $y = (4-2)^2 + 3$
 $= 2^2 + 3$
 $= 4+3$
 $= 7$

$$-\mathbf{y} = \mathbf{a}(\mathbf{x} - \mathbf{p})^2 + \mathbf{q}$$
 のグラフ



[練習1] 次の関数のグラフは、() 内の関数の表すグラフをどのように平行移動したものか。また、 頂点の座標、軸の方程式、放物線が上に凸であるか、下に凸であるかを の中に答えなさい。

- (1) $y = (x-4)^2 + 5$ $(y = x^2)$
- (2) $y = 2(x+2)^2 + 3$ $(y = 2x^2)$

x 軸方向に 4

x 軸方向に -2

y 軸方向に 5

y 軸方向に 3

頂点の座標 (4、5)

頂点の座標 (-2、3)

軸の方程式 x=4

軸の方程式 **x** = - 2

下に凸

下に凸

- (3) $y = -(x-3)^2 1$ $(y = -x^2)$
- (4) $y = -3(x+1)^2 4$ $(y = -3x^2)$

x 軸方向に 3

x 軸方向に - 1

y 軸方向に -4

頂点の座標 (3、-1)

頂点の座標 (-1、-4)

軸の方程式 **x** = 3

軸の方程式 **x** = - 1

上 に凸

上 に凸

[練習 2] 次の関数のグラフを、()内に示したように平行移動したとき、そのグラフを表す関数を $y = a(x-p)^2 + q$ の形で示しなさい。

(1) $y=x^2$ (x 軸方向に 3 , y 軸方向に -2)・・・x を(x-3)に書き変え、右辺に-2

 $y = (x-3)^2-2$

$$y = x^2 \rightarrow y = (x-3)^2 \rightarrow y = (x-3)^2 - 2$$

(2) $y=2x^2$ (x 軸方向に -3 , y 軸方向に 6)・・・ x を(x+3)に書き変え、右辺に+6

$$y = 2(x+3)^2+6$$

$$y = 2x^2 \rightarrow y = 2(x+3)^2 \rightarrow y = 2(x+3)^2 + 6$$

[練習3] 次の関数の頂点および軸を求め、グラフをかきなさい。

(1)
$$y = (x-3)^2-2$$

頂点の座標(3、-2)

軸の方程式: x = 3

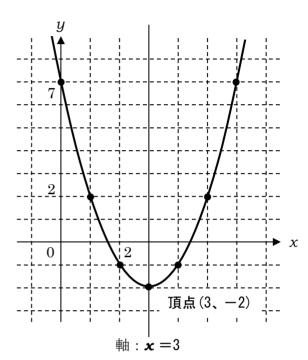
X	0	1	2	3	4	5	6
x-3	-3	-2	-1	0	1	2	3
$(x-3)^2$	9	4	1	0	1	4	9
$(x-3)^2-2$	7	2	-1	-2	-1	2	7

$$x = 4 \mathcal{O}$$
 とき
 $y = (4-3)^2 - 2$
 $= 1^2 - 2$
 $= 1 - 2$
 $= -1$
 $x = 5 \mathcal{O}$ とき
 $y = (5-3)^2 - 2$

= 5 のとき

$$y = (5-3)^2 - 2$$

= $2^2 - 2$
= $4-2$
= 2



(2)
$$y = -2(x+2)^2+1$$

頂点の座標(- 2 、1)

軸の方程式: x = -2

X	-4	-3	-2	-1	0
x+2	-2	-1	0	1	2
$(x+2)^2$	4	1	0	1	4
$-2(x+2)^{2}$	-8	-2	0	-2	-8
$-2(x+2)^2+1$	-7	-1	1	-1	-7

$$x = -1 の と き$$

$$y = -2 (-1 + 2)^{2} + 1$$

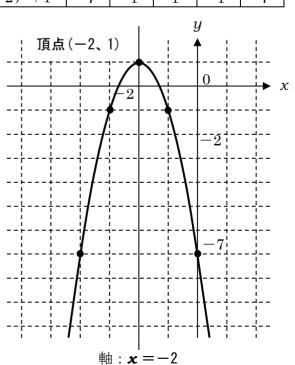
$$= -2 \times 1^{2} + 1$$

$$= -2 + 1$$

$$= -1$$

$$x = 0$$
 のとき
 $y = -2(0+2)^2 + 1$
 $= -2 \times 2^2 + 1$
 $= -8 + 1$
 $= -7$

4



数学 I <後> 第2回レポート用スクーリング教材ーその1

- 2 次関数のグラフ (3) 「教科書: p88~p91]
- $y = ax^2 + bx + c$ のグラフ 次の式変形がグラフをかく準備となる。

【学習のポイント】 「平方完成」ということ

- (1) $y = ax^2 + bx + c$ は、 $y = a(x-p)^2 + q$ の形に変形してグラフの頂点・軸を求める。 ……第 2 回レポートの目標

という関係式を使う。 ・・・・・中学数学の復習

[準 備] 次の式を平方完成しなさい。

(1) x^2+4x+4

(2) x^2-4x+4

(3) x^2+6x+9

(4) x^2-2x+1

[例1] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求めなさい。

(1) $y = x^2 + 2x$

頂点 (,)、軸:**x**=

(2) $y = x^2 - 2x$

頂点 、軸:

(3) $y = x^2 + 4x + 3$

[練習 1] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求めなさい。

(1) $y = x^2 + 10x$

頂点	、軸:	

(2) $y = x^2 - 4x$

(3) $y = x^2 + 2x + 5$

(4) $y = x^2 - 4x - 1$

[例2] 次の関数を $y = \alpha(x-p)^2 + q$ の形に変形し、頂点および軸を求めなさい。

(1) $y = 2x^2 + 8x + 7$ $= 2(x^2 + 4x) + 7$ $= 2(x^2 + 4x) + 7$ $= 2(x + 2)^2 - 4 + 7$ $= 2(x + 2)^2 - 8 + 7$ $= 2(x + 2)^2 - 1$ $= 2(x + 2)^2 - 1$

(2) $y = -x^2 - 6x - 4$

頂点 、軸:

[練習 2] 次の関数を $y=a(x-p)^2+q$ の形に変形し、頂点および軸を求めなさい。

(1) $y = 2x^2 + 4x - 1$

頂点 、軸:

(2) $y = -x^2 + 8x - 9$

頂点

、軸:

(3) $y = 3x^2 - 6x + 3$

頂点

、軸:

 $(4) y = -2x^2 + 8x - 9$

頂点

、軸:

数学 I <後> 第2回レポート用スクーリング教材 - その1 解答例

- 2 次関数のグラフ (3) 「教科書: p 88~ p 91]
- $y = ax^2 + bx + c$ のグラフ 次の式変形がグラフをかく準備となる。

【学習のポイント】 「平方完成」ということ

- (1) $y = ax^2 + bx + c$ は、 $y = a(x-p)^2 + q$ の形に変形してグラフの頂点・軸を求める。 ・・・・・第2回レポートの目標

という関係式を使う。 ・・・・・中学数学の復習

[準 備] 次の式を平方完成しなさい。

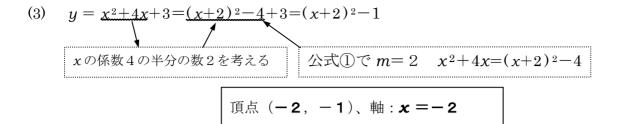
(1) $\underline{x^2+4}\underline{x}+4$ = $(\underline{x+2})^2-4+4$ = $(x+2)^2$ (2) $\underline{x^2-4}\underline{x}+4$ = $\underline{(x-2)^2-4}+4$ = $(x-2)^2$

(3) $\underline{x^2+6x}+9$ = $\underline{(x+3)^2-9}+9$ = $(x+3)^2$ (4) $\underline{x^2-2}\underline{x}+1$ = $\underline{(x-1)^2-1}+1$ = $(x-1)^2$

[例 1] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求めなさい。

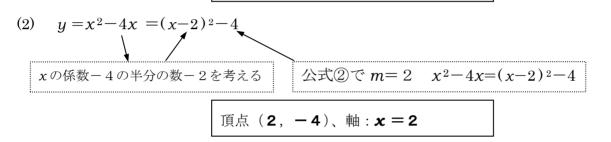
頂点 (-1, -1)、軸:**x**=-1

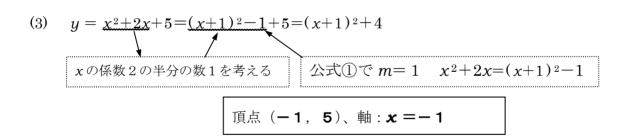
頂点 (1, -1)、軸: x = 1



[練習 1] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求めなさい。

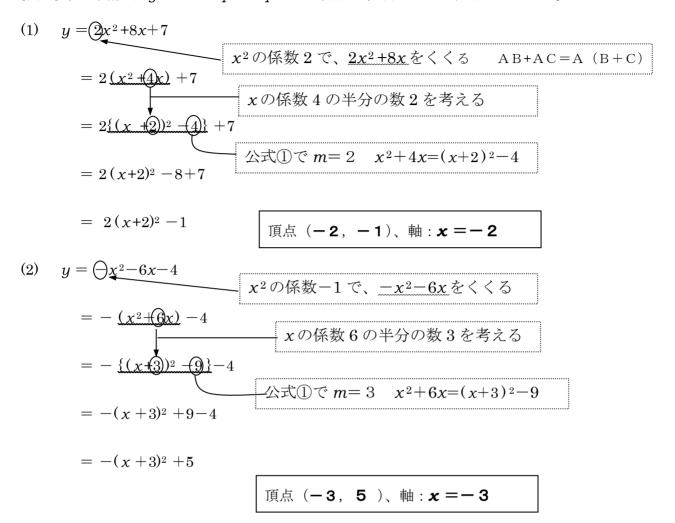
(1)
$$y = x^2 + 10x = (x+5)^2 - 25$$
 x の係数 1 のの半分の数 5 を考える 公式①で $m = 5$ $x^2 + 10x = (x+5)^2 - 25$ 頂点 $(-5, -25)$ 、軸: $x = -5$



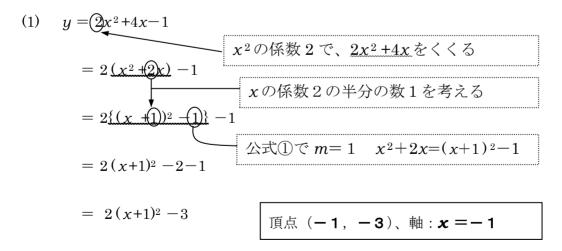


(4)
$$y = x^2 - 4x - 1 = (x-2)^2 - 4 - 1 = (x-2)^2 - 5$$
 x の係数 -4 の半分の数 -2 を考える 公式②で $m = 2$ $x^2 - 4x = (x-2)^2 - 4$ 頂点 $(\mathbf{2}, -\mathbf{5})$ 、軸: $\mathbf{x} = \mathbf{2}$

[例2] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求めなさい。



[練習 2] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求めなさい。



(2)
$$y = \bigcirc x^2 + 8x - 9$$
 $x^2 \circ 0$ 係数 -1 で、 $-x^2 + 8x$ をくくる $= -(x^2 \otimes x) - 9$ $x \circ 0$ 係数 $-8 \circ 2$ 分数 -4 を考える $= -(x \otimes 4)^2 \otimes (-16)^2 \otimes (-16)^$

(4)
$$y = 2x^2 + 8x - 9$$

$$= -2(x^2 - 4x) - 9$$

$$= -2\{(x - 2)^2 - 4\} - 9$$

$$= -2(x - 2)^2 + 8 - 9$$

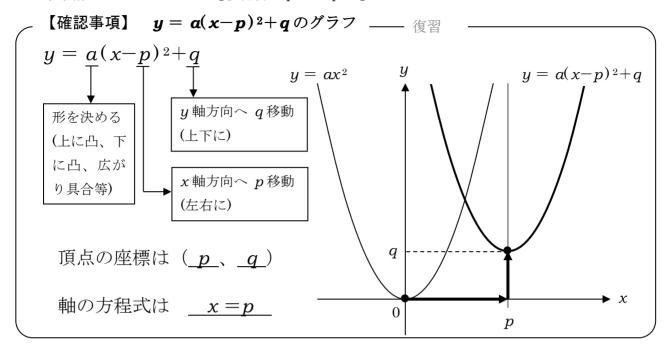
$$= -2(x - 2)^2 - 1$$

$$= -2(x - 2)^2 - 1$$

$$\boxed{\text{頂点}(2, -1), \ \text{軸}: x = 2}$$

数学 I <後> 第2回レポート用スクーリング教材ーその2

- 2 次関数のグラフ (3) - 「教科書: p88~p91]



■ $y = ax^2 + bx + c$ のグラフ 次の式変形がグラフをかく準備となる。

【学習のポイント】 「平方完成」ということ

- (1) $y = ax^2 + bx + c$ は、 $y = a(x-p)^2 + q$ の形に変形してグラフの頂点・軸を求める。 ・・・・・・第 2 回 レポートの目標

[例 1] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求めなさい。

(1)
$$y = x^2 - 6x + 7$$

頂点(,)、軸:

 $(2) \qquad y = -x^2 - 2x$

頂点(,)、軸:

[練習 1] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求めなさい。

(1) $y = x^2 + 4x + 1$

頂点(,)、軸:

(2) $y = 2x^2 - 4x + 5$

頂点(,)、軸:

[例 2] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求め、そのグラフをかきなさい。

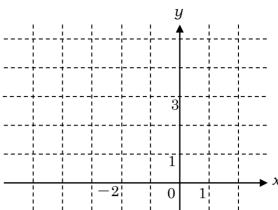
(1) $y = x^2 - 2x - 1$

頂点(、)、軸:

 $\begin{array}{c|c}
\hline
5 \\
\hline
0 \\
1
\\
\hline
-1
\end{array}$

> 頂点のx座標が 真中になるようにする。

(2) $y = -x^2 - 4x - 1$



頂点(、)、軸:

(参考)

$$x = -1$$
 のとき
 $y = -(-1+2)^2 + 3$

$$x = 0$$
 のとき
 $y = -(0+2)^2 + 3$

	0	1	X
 	-1	 	
 		 	
 	- 		
 		 	

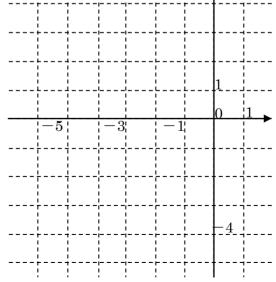
х				• • •
y	• • •			• • •

[練習 2] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求め、そのグラフをかきなさ

 $\backslash \, \, \backslash_\circ$

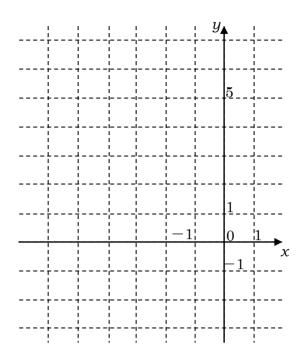
(1)
$$y = x^2 + 6x + 5$$

頂点(、)、軸:



х				
y				

 $(2) \quad y = 2x^2 + 8x + 5$



頂点(、)、軸:

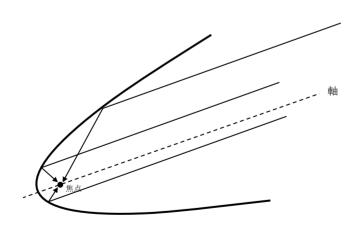
(参考)

$$x = -1$$
 のとき
 $y = 2(-1+2)^2 - 3$

$$x = 0$$
 のとき
 $y = 2(0+2)^2 - 3$

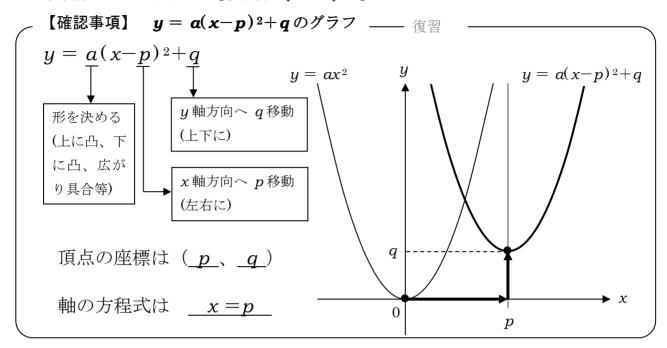
х				
y	• • •			

[曲線の神秘]



数学 I <後> 第 2 回レポート用スクーリング教材 - その 2 **解答例**

- 2 次関数のグラフ (3) - 「教科書: p88~p91]



■ $y = ax^2 + bx + c$ のグラフ 次の式変形がグラフをかく準備となる。

【学習のポイント】 「平方完成」ということ

- (1) $y = ax^2 + bx + c$ は、 $y = a(x-p)^2 + q$ の形に変形してグラフの頂点・軸を求める。 ・・・・・第2回レポートの目標

[例1] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求めなさい。

$$y = \underbrace{x^2 - 6x} + 7 = \underbrace{(x - 3)^2 - 9} + 7 = (x - 3)^2 - 2$$
 頂点 (3, -2)、軸: $x = 3$

(2) $y = -x^2 - 2x = -(x^2 + 2x) = -(x+1)^2 - 1 = -(x+1)^2 + 1$

$$x^2$$
の係数 -1 で、 $-x^2-2x$ をくくる 公式①で $m=1$

頂点(**-1**, **1**)、軸 : **x** = **-1**

[練習1] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求めなさい。

(1)
$$y = \underline{x^2 + 4x} + 1 = \underline{(x+2)^2 - 4} + 1 = (x+2)^2 - 3$$
 頂点 $(-2, -3)$ 、軸: $x = -2$

(2)
$$y = 2x^2 - 4x + 5 = 2(x^2 - 2x) + 5 = 2((x - 1)^2 - 1) + 5 = 2(x - 1)^2 - 2 + 5 = 2(x - 1)^2 + 3$$

 x^2 の係数 2 で、 $2x^2-4x$ をくくる

公式②で m=1

頂点(1,3)、軸:x=1

[例 2] 次の関数を $y = a(x-p)^2 + q$ の形に変形し、頂点および軸を求め、そのグラフをかきなさい。

(1)
$$y = x^2 - 2x - 1$$

= $(x-1)^2 - 1 - 1$

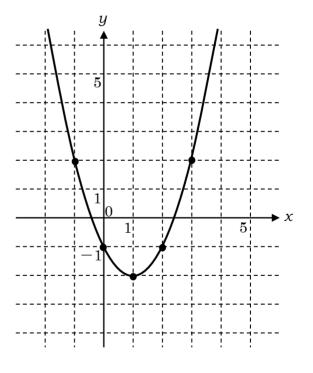
$$=(x-1)^2-2$$

頂点 (1, -2)、軸: x = 1

(参考)

$$x = 2$$
 のとき
 $y = (2-1)^2 - 2$
 $= 1^2 - 2 = 1 - 2 = -1$

$$x = 3$$
 のとき
 $y = (3-1)^2 - 2$
 $= 2^2 - 2 = 4 - 2 = 2$

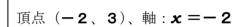


х	• • •	-1	0	1	2	3	
y		2	- 1	- 2	- 1	2	

頂点のx座標の1が 真中になるようにする。

(2)
$$y = -x^2 - 4x - 1$$

 $= -(x^2 + 4x) - 1$
 $= -\{(x+2)^2 - 4\} - 1$
 $= -(x+2)^2 + 4 - 1$
 $= -(x+2)^2 + 3$



$$x = -1 の と き$$

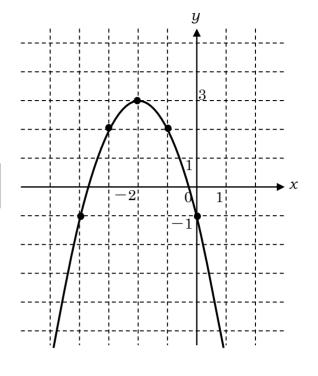
$$y = -(-1+2)^2 + 3$$

$$= -1^2 + 3 = -1 + 3 = 2$$

$$x = 0 の と き$$

$$y = -(0+2)^2 + 3$$

$$= -2^2 + 3 = -4 + 3 = -1$$



х	• • •	-4	- 3	- 2	- 1	0	
y	• • •	- 1	2	3	2	- 1	• • •

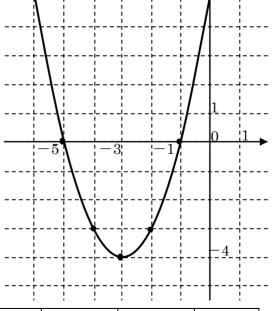
[練習 2] 次の関数を $y=a(x-p)^2+q$ の形に変形し、頂点および軸を求め、そのグラフをかきなさ

V10

(1)
$$y = x^2 + 6x + 5$$

= $(x+3)^2 - 9 + 5$
= $(x+3)^2 - 4$

頂点 (-3, -4)、軸: x = -3



х	 - 5	- 4	- 3	- 2	- 1	• • •
y	 0	- 3	-4	- 3	0	• • •

(2)
$$y = 2x^2 + 8x + 5$$

 $= 2(x^2 + 4x) + 5$
 $= 2\{(x + 2)^2 - 4\} + 5$
 $= 2(x + 2)^2 - 8 + 5$
 $= 2(x + 2)^2 - 3$

$$x = -1 の とき$$

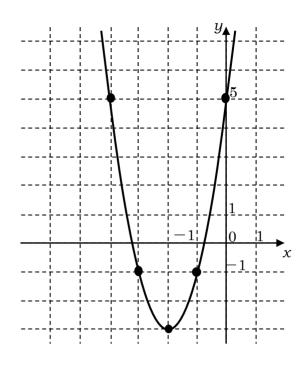
$$y = 2(-1+2)^2 - 3$$

$$= 2 \times 1^2 - 3 = 2 - 3 = -1$$

$$x = 0 の とき$$

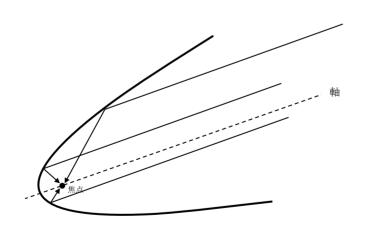
$$y = 2(0+2)^2 - 3$$

$$= 2 \times 2^2 - 3 = 8 - 3 = 5$$



	х	 -4	- 3	- 2	- 1	0	
-	у	 5	- 1	- 3	- 1	5	

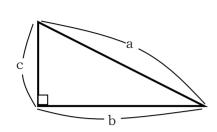
[曲線の神秘]



数学 I <後> 第3回レポート用スクーリング教材

- 三角比(tanA, sinA, cosA) - [教科書: p 104~ p 113]

三平方(ピタゴラス)の定理



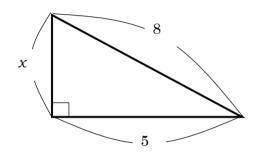
左図の直角三角形に対して

$$a^2 = b^2 + c^2$$

斜辺の二乗=(底辺の二乗)+(対辺の二乗)が成立する。 直角三角形では、2辺の長さから他の辺を求められる。

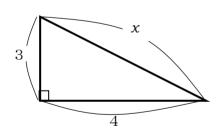
(注) 三平方の定理は中学で学ぶ内容である。数学で最も大事な定理と言っていいでしょう。

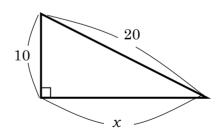
[例 1] 次の直角三角形について、xの値を求めなさい。



[練習1] 次の直角三角形について、xの値を求めなさい。

(1)





(2)

三角比 sin、cos、tan の定義

直角三角形の直角でない角 θ に辺の長さの比の値を次のように対応させる。

 θ に対して $\frac{c}{a}$ を対応させる。この対応を \sin と書く。

 θ に対して $\frac{b}{a}$ を対応させる。この対応を \cos と書く。

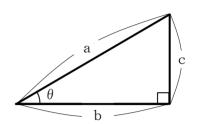
 θ に対して $\frac{c}{h}$ を対応させる。この対応を \tan と書く。

つまり、

$$\sin \theta = \frac{c}{a} = \frac{\text{対辺}}{\text{斜辺}}$$
 $\cos \theta = \frac{b}{a} = \frac{\text{底辺}}{\text{斜辺}}$

$$\cos \theta = \frac{b}{a} = \frac{底辺}{斜辺}$$

$$\tan \theta = \frac{c}{b} = \frac{\text{対}\overline{U}}{\text{底}\overline{U}}$$

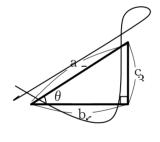


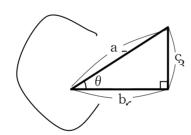
(注) 覚え方

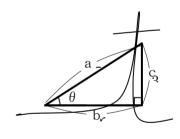
$$\sin \theta = \frac{c}{a} = \frac{対辺}{斜辺}$$

$$\cos \theta = \frac{b}{a} = \frac{$$
底辺} 斜辺

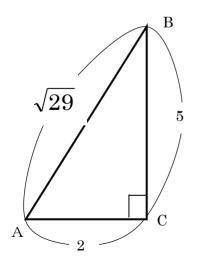
$$\tan \theta = \frac{c}{b} = \frac{\text{yi}}{\text{EU}}$$





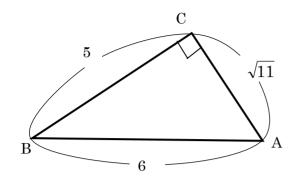


[例 2] 下図の直角三角形で、sinA、cosA、tanAの値を求めなさい。



$$\cos A =$$

[練習2] 下図の直角三角形で、sinA、cosA、tanAの値を求めなさい。



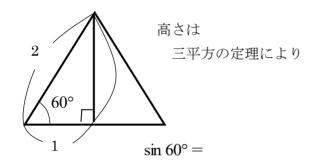
sinA =

 $\cos A =$

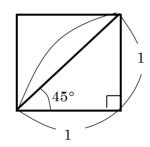
tanA =

[例 3] 次の三角比の値を求めなさい。

 $(1) \sin 60^{\circ}$



(2) $\cos 45^{\circ}$



斜辺の長さは 三平方の定理により

 $\cos 45^{\circ} =$

[練習3] 次の三角比の値を求めなさい。

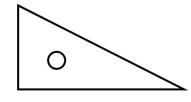
(1) $\sin 45^{\circ} =$

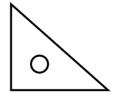
(2) $\cos 60^{\circ} =$

(3) $\tan 30^{\circ} =$

参考

市販の三角定規の辺の長さの比





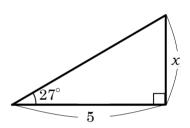
市販の三角定規の斜辺の長さを1とした場合の残りの辺の長さ

- [例 4] 三角比の表(教科書 p 171) を用いて次の三角比の値を求めなさい。
 - (1) $\sin 73^{\circ}$

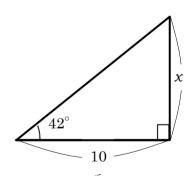
(2) $\cos 25^{\circ}$

[練習4] 三角比の表を用いて次の三角比の値を求めなさい。

- (1) $\sin 59^{\circ} =$
- (2) $\cos 19^{\circ} =$
- (3) $\tan 80^{\circ} =$
- [例 5] 三角比の表を用いて図のxの値を求めなさい。小数第2位を四捨五入すること。

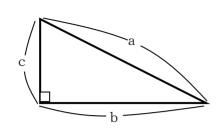


[練習 5] 三角比の表を用いて図のxの値を求めなさい。 小数点以下を四捨五入すること。



数学 I <後> 第3回レポート用スクーリング教材 解答例

- 三角比(tanA, sinA, cosA) 「教科書: p 104~ p 113]
 - <1-1> 三平方(ピタゴラス)の定理 ———

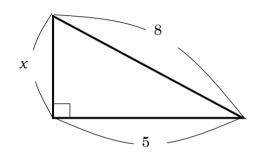


左図の直角三角形に対して

$$a^2 = b^2 + c^2$$

斜辺の二乗=(底辺の二乗)+(対辺の二乗)が成立する。 直角三角形では、2辺の長さから他の辺を求められる。

- (注) 三平方の定理は中学で学ぶ内容である。数学で最も大事な定理と言っていいでしょう。
- [例 1] 次の直角三角形について、xの値を求めなさい。



三平方の定理により

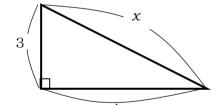
$$x^2 + 5^2 = 8^2$$

$$x^2 = 8^2 - 5^2 = 39$$

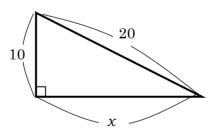
従って x > 0 より $x = \sqrt{39}$

[練習 1] 次の直角三角形について、xの値を求めなさい。

(1)



(2)



三平方の定理により

$$x^2 = 3^2 + 4^2 = 25$$

$$x > 0$$
 $\downarrow y$ $x = \sqrt{25} = 5$

三平方の定理により

$$x^2 + 10^2 = 20^2$$

$$x^2 = 20^2 - 10^2 = 300$$

従って x > 0 より $x = \sqrt{300} = 10\sqrt{3}$

<1-2> 三角比 sin、cos、tan の定義

直角三角形の直角でない角 θ に辺の長さの比の値を次のように対応させる。

 θ に対して $\frac{c}{a}$ を対応させる。この対応を \sin と書く。

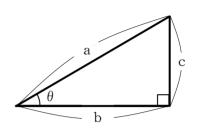
 θ に対して $\frac{b}{a}$ を対応させる。この対応を \cos と書く。

 θ に対して $\frac{c}{b}$ を対応させる。この対応を an と書く。

$$\sin \theta = \frac{c}{a} = \frac{\text{対辺}}{\text{斜辺}}$$
 $\cos \theta = \frac{b}{a} = \frac{\text{ 底辺}}{\text{ 斜辺}}$

$$\cos \theta = \frac{b}{a} = \frac{\boxed{\text{KU}}}{2 \boxed{\text{AU}}}$$

$$\tan \theta = \frac{c}{b} = \frac{\text{yi}}{\text{EU}}$$

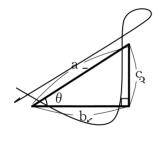


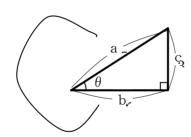
(注) 覚え方

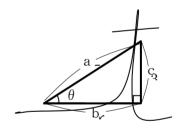
$$\sin \theta = \frac{c}{a} = \frac{\text{対辺}}{\text{斜辺}}$$

$$\cos \theta = \frac{b}{a} = \frac{\text{EU}}{\text{AU}}$$

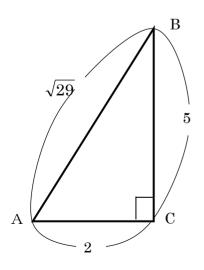
$$\tan \theta = \frac{c}{b} = \frac{\text{対} \overline{U}}{\text{底} \overline{U}}$$







[例 2] 下図の直角三角形で、sinA、cosA、tanAの値を求めなさい。

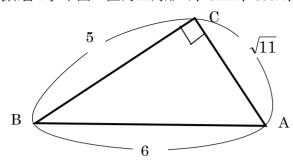


$$\sin A = \frac{5}{\sqrt{29}}$$

$$\cos A = \frac{2}{\sqrt{29}}$$

$$tanA = \frac{5}{2}$$

[練習2] 下図の直角三角形で、sinA、cosA、tanAの値を求めなさい。



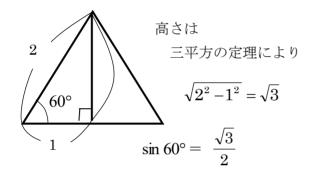
$$\sin\! A \, = \frac{5}{6}$$

$$\cos A = \frac{\sqrt{11}}{6}$$

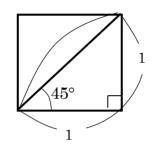
$$tanA = \frac{5}{\sqrt{11}}$$

[例 3] 次の三角比の値を求めなさい。

(1) sin 60°



(2) cos 45°



斜辺の長さは 三平方の定理により

$$\sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}}$$

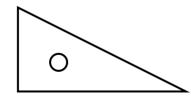
[練習3] 次の三角比の値を求めなさい。

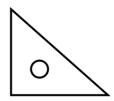
- $(1) \quad \sin 45^\circ = \frac{1}{\sqrt{2}}$
- (3) $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$

(2) $\cos 60^{\circ} = \frac{1}{2}$

参考

市販の三角定規の辺の長さの比





市販の三角定規の斜辺の長さを1とした場合の残りの辺の長さ

- [例 4] 三角比の表(教科書 p 171) を用いて次の三角比の値を求めなさい。
 - (1) $\sin 73^\circ$

(2) $\cos 25^{\circ}$

= 0.9563

= 0.9063

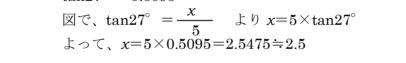
[練習4] 三角比の表を用いて次の三角比の値を求めなさい。

- (1) $\sin 59^{\circ} = 0.8572$
- (2) $\cos 19^{\circ} = 0.9455$
- (3) $\tan 80^{\circ} = 5.6713$

[例 5] 三角比の表を用いて図のxの値を求めなさい。 小数第2位を四捨五入すること。

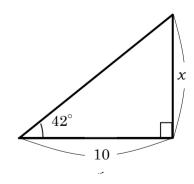
$$\tan 27^{\circ} = 0.5095$$

図で、 $\tan 27^{\circ} = \frac{x}{5}$ より $x=5 \times \tan 27^{\circ}$
よって、 $x=5 \times 0.5095 = 2.5475 = 2.5$



[練習 5]] 三角比の表を用いて図のxの値を求めなさい。 小数点以下を四捨五入すること。

> $\tan 42^{\circ} = 0.9004$ 図で、 $\tan 42^{\circ} = \frac{x}{10}$ より $x=10 \times \tan 42^{\circ}$ よって、 $x=10\times0.9004=9.004=9$



数学I<後> 第4回レポート用スクーリング教材

三角比の相互関係 - 「教科書: p114~p116]

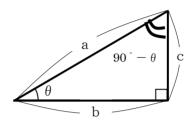
三角比の性質(1)

$$\sin(90^{\circ} - \theta) = \cos\theta \qquad \cos(90^{\circ} - \theta) = \sin\theta$$

$$\sin \theta = \frac{\dot{\gamma}\dot{U}}{\dot{\gamma}\dot{U}} = \frac{c}{a}$$
 $\cos \theta = \frac{\dot{E}\dot{U}}{\dot{\gamma}\dot{U}} = \frac{b}{a}$ $\tan \theta = \frac{\dot{\gamma}\dot{U}}{\dot{E}\dot{U}} = \frac{c}{b}$

$$\sin(90^{\circ} - \theta) = \frac{対辺}{辩辺} = \frac{b}{a} = \cos\theta$$

$$\cos(90^{\circ} - \theta) = \frac{底辺}{斜辺} = \frac{c}{a} = \sin \theta$$



三角比の性質(2)

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin^2\theta + \cos^2\theta = 1$$

(注 1) $(\sin \theta)^2$ を $\sin^2 \theta$ と書く。他も同様 <

$$\sin \theta = \frac{\overrightarrow{\text{yi}}}{\cancel{\text{Aid}}} = \frac{c}{a}$$
 $\cos \theta = \frac{\overrightarrow{\text{Ei}}}{\cancel{\text{Aid}}} = \frac{b}{a}$ $\tan \theta = \frac{\overrightarrow{\text{yi}}}{\cancel{\text{Ei}}} = \frac{c}{b}$

$$\tan \theta = \frac{\cancel{y}\cancel{\cancel{y}}}{\cancel{\cancel{x}}} = \frac{c}{b}$$

また、
$$\frac{\sin \theta}{\cos \theta} = \frac{\left(\frac{c}{a}\right)}{\left(\frac{b}{a}\right)} = \left(\frac{c}{a}\right) \div \left(\frac{b}{a}\right) = \frac{c}{b} = \tan \theta$$
 となる

[例 1] $\sin \theta$ 、 $\cos \theta$ 、 $\tan \theta$ のうち、2 つの値が次のように与えられたとき、残りの値を求めなさい。

(1)
$$\sin \theta = \frac{\sqrt{15}}{8} \quad \cos \theta = \frac{7}{8}$$

(2)
$$\sin \theta = \frac{5}{\sqrt{29}} \quad \tan \theta = \frac{5}{2}$$

[練習 1] $\sin\theta$ 、 $\cos\theta$ 、 $\tan\theta$ のうち、2つの値が次のように与えられたとき、残りの値を求めなさい。

(1)
$$\sin \theta = \frac{3}{\sqrt{13}} \cdot \cos \theta = \frac{2}{\sqrt{13}}$$

(2)
$$\cos \theta = \frac{2}{5}$$
, $\tan \theta = \frac{\sqrt{21}}{2}$

[例 2] $\cos \theta = \frac{3}{4}$ のとき、 $\sin \theta$ 、 $\tan \theta$ の値を求めなさい。ただし、 θ は鋭角とします。

解
$$\cos \theta = \frac{3}{4}$$
 を $\sin^2 \theta + \cos^2 \theta = 1$ に代入すると、

$$\sin^2\theta + = 1$$

$$\sin^2 \theta = 1 - =$$

$$\sin \theta > 0$$
 であるから、 $\sin \theta =$

また、
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \sin \theta \div \cos \theta$$
 より

$$\tan \theta =$$

- [練習 2] $\sin\theta$ 、 $\cos\theta$ 、 $\tan\theta$ のうち、1つが次のように与えられたとき、他の2つの値を求めなさい。 ただし、 θ は鋭角とします。
 - (1) $\sin \theta = \frac{1}{3}$

(2)
$$\cos\theta = \frac{5}{6}$$

参考

[教科書: p 117∼ p 121]

- どんな三角形にも成り立つ覚えておいてもよい公式 -

三角形の面積

$$S = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C$$

正弦定理

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
 (R は△ABC の外接円の半径)

余弦定理(1)

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$b^2 = c^2 + a^2 - 2ca\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

余弦定理(2)

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

数学 I <後> 第4回レポート用スクーリング教材 │**解 答 例**│

三角比の相互関係 - 「教科書: p114~p116]

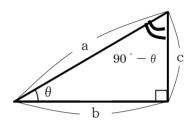
三角比の性質(1)

$$\sin(90^{\circ} - \theta) = \cos\theta \qquad \cos(90^{\circ} - \theta) = \sin\theta$$

$$\sin \theta = \frac{\overrightarrow{\text{mid}}}{\cancel{\text{sin}}} = \frac{c}{a}$$
 $\cos \theta = \frac{\overrightarrow{\text{kid}}}{\cancel{\text{sid}}} = \frac{b}{a}$ $\tan \theta = \frac{\overrightarrow{\text{mid}}}{\cancel{\text{kid}}} = \frac{c}{b}$

$$\sin(90^{\circ} - \theta) = \frac{対辺}{斜辺} = \frac{b}{a} = \cos\theta$$

$$\cos(90^{\circ} - \theta) = \frac{底辺}{斜辺} = \frac{c}{a} = \sin \theta$$



三角比の性質(2)

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$\sin^2\theta + \cos^2\theta = 1$$

(注 1) $(\sin \theta)^2$ を $\sin^2 \theta$ と書く。他も同様 <

$$\sin \theta = \frac{\overrightarrow{\text{yi}}}{\cancel{\text{Aid}}} = \frac{c}{a}$$
 $\cos \theta = \frac{\overrightarrow{\text{Ei}}}{\cancel{\text{Aid}}} = \frac{b}{a}$ $\tan \theta = \frac{\overrightarrow{\text{yi}}}{\cancel{\text{Ei}}} = \frac{c}{b}$

$$\tan \theta = \frac{\cancel{\Sigma}\cancel{U}}{\cancel{E}\cancel{U}} = \frac{c}{b}$$

また、
$$\frac{\sin \theta}{\cos \theta} = \frac{\left(\frac{c}{a}\right)}{\left(\frac{b}{a}\right)} = \left(\frac{c}{a}\right) \div \left(\frac{b}{a}\right) = \frac{c}{b} = \tan \theta$$
 となる

[例 1] $\sin \theta$ 、 $\cos \theta$ 、 $\tan \theta$ のうち、2 つの値が次のように与えられたとき、残りの値を求めなさい。

$$(1) \quad \sin \theta = \frac{\sqrt{15}}{8} \quad \cos \theta = \frac{7}{8}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{15}}{8} \div \frac{7}{8} = \frac{\sqrt{15}}{8} \times \frac{8}{7} = \frac{\sqrt{15}}{7}$$

(2)
$$\sin \theta = \frac{5}{\sqrt{29}} \quad \tan \theta = \frac{5}{2}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \quad \sharp \, \emptyset$$

$$\cos\theta = \frac{\sin\theta}{\tan\theta} = \frac{5}{\sqrt{29}} \div \frac{5}{2} = \frac{5}{\sqrt{29}} \times \frac{2}{5} = \frac{2}{\sqrt{29}}$$

[練習1] $\sin \theta$ 、 $\cos \theta$ 、 $\tan \theta$ のうち、2 つの値が次のように与えられたとき、残りの値を求めなさい。

(1)
$$\sin \theta = \frac{3}{\sqrt{13}} \quad \cos \theta = \frac{2}{\sqrt{13}}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3}{\sqrt{13}} \div \frac{2}{\sqrt{13}} = \frac{3}{\sqrt{13}} \times \frac{\sqrt{13}}{2} = \frac{3}{2}$$

(2)
$$\cos \theta = \frac{2}{5}$$
, $\tan \theta = \frac{\sqrt{21}}{2}$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \quad \sharp \, \emptyset$$

$$\sin \theta = \tan \theta \times \cos \theta = \frac{\sqrt{21}}{2} \times \frac{2}{5} = \frac{\sqrt{21}}{5}$$

[例 2] $\cos \theta = \frac{3}{4}$ のとき、 $\sin \theta$ 、 $\tan \theta$ の値を求めなさい。ただし、 θ は鋭角とします。

$$\sin^2\theta + \left(\frac{3}{4}\right)^2 = 1$$

$$\sin^2 \theta = 1 - \left(\frac{3}{4}\right)^2 = 1 - \frac{9}{16} = \frac{7}{16}$$

$$\sin \theta > 0$$
 であるから、 $\sin \theta = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4}$

また、
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \sin \theta \div \cos \theta$$
 より

$$\tan \theta = \frac{\sqrt{7}}{4} \div \frac{3}{4} = \frac{\sqrt{7}}{4} \times \frac{4}{3} = \frac{\sqrt{7}}{3}$$

[練習 2] $\sin \theta$ 、 $\cos \theta$ 、 $\tan \theta$ のうち、1 つが次のように与えられたとき、他の2 つの値を求めなさい。 ただし、 θ は鋭角とします。

(1)
$$\sin \theta = \frac{1}{3}$$

$$\sin^2 \theta + \cos^2 \theta = 1$$
 $\sharp \theta - \cos^2 \theta = 1 - \left(\frac{1}{3}\right)^2 = \frac{8}{9}$

$$\cos > 0$$
 であるから、 $\cos \theta = \sqrt{\frac{8}{9}} = \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3}$

$$\sharp \not \sim \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{1}{3} \div \frac{2\sqrt{2}}{3} = \frac{1}{3} \times \frac{3}{2\sqrt{2}} = \frac{1}{2\sqrt{2}}$$

$$(2) \quad \cos\theta = \frac{5}{6}$$

$$\sin^2 \theta + \cos^2 \theta = 1$$
 $\sharp \theta = 1 - \left(\frac{5}{6}\right)^2 = \frac{11}{36}$

$$\sin > 0$$
 であるから、 $\sin \theta = \sqrt{\frac{11}{36}} = \frac{\sqrt{11}}{6}$

#\tan \theta =
$$\frac{\sin \theta}{\cos \theta} = \frac{\sqrt{11}}{6} \div \frac{5}{6} = \frac{\sqrt{11}}{6} \times \frac{6}{5} = \frac{\sqrt{11}}{5}$$

参考

[教科書: p 117∼ p 121]

- どんな三角形にも成り立つ覚えておいてもよい公式 -

三角形の面積

$$S = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C$$

正弦定理

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
 (R は△ABC の外接円の半径)

余弦定理(1)

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$b^2 = c^2 + a^2 - 2ca\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

余弦定理(2)

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

数学 I <後> 第5回レポート用スクーリング教材

- データの分析 - [教科書: p136~p141]

データの代表値

- (3) 最頻値(モード) … データのなかでもっとも多く出てくる値。

データの散らばり(1)

- (1) 四分位数
 - ・第1四分位数…最小値から中央値の1つ前までの

· 第 2 四分位数…	
-------------	--

- ・第3四分位数…中央値の1つ後の値から最大値までの
- (2) 四分位範囲、四分位偏差
 - ·四分位範囲···第 四分位数 第 四分位数
 - 四分位

 ・四分位偏差…
 2

データの散らばり(2)

(1) 偏差…データの各値-

(3) 標準偏差 = /

例1 次のデータの平均値と中央値をそれぞれ求めなさい。	
30 27 25 18 13 10 7 6	
	平均値
	中央値
練習 1 次のデータの平均値と中央値をそれぞれ求めなさい。 (1) 2 4 6 8 10	
	平均値
	中央値
(2) 21 13 18 7 4 19 9 9 15 20	
	平均値
	中央値
例2 次のデータの第 1 四分位数、第 2 四分位数、第 3 四分位数 四分位範囲と四分位偏差を求めなさい。 16 5 24 10 14 3 15 8 19 12	をそれぞれ求めなさい。さらに、
	第 1 四分位数
	第2四分位数
	第 3 四分位数
	四分位範囲
	四分位偏差

練習 2 次のデータの第1四分位数、第2四分位数、第3四分位数を	それぞれ求めなさい。さらに、
四分位範囲と四分位偏差を求めなさい。	
(1) 1 2 3 5 6 8 11 13 14 15 18 第 3	1 四分位数
第	2 四分位数
第:	3 四分位数
四	分位範囲
四	分位偏差
$(2)\ 23\ 42\ 28\ 33\ 31\ 24\ 45\ 28$	
第	1 四分位数
第	2 四分位数
第	3 四分位数
四	分位範囲
四	分位偏差
例3 5個のデータ 3 7 11 14 15 について次の各問に答えな	さい。
(1) このデータの平均値 x を求めなさい。	
	$\begin{array}{c c} x & - \\ \hline x - x \\ \end{array}$
	3 7
	11
	14
	15
(2) 分散 s^2 を求めなさい。	計

(3) 標準偏差 s を求めなさい。ただし、 $\sqrt{5}=2.236$ とし、小数点第3位を四捨五入して答えなさい。

練習3 6個のデータ 3.6 3.9 4.3 5.5 6.1 6.6 について次の各間に答えなさい。

(1) このデータの平均値 x を求めなさい。

(2) (1) で求めた \bar{x} を用いて、右の表を完成しなさい。

x	$x-\bar{x}$
3.6	
3.9	
4.3	
5.5	
6.1	
6.6	
計	

(3) 右上の表を利用して、分散 s^2 を求めなさい。

(4) 標準偏差 s を求めなさい。ただし、 $\sqrt{2}=1.414$ とし、小数第 3 位を四捨五入して答えなさい。

<参考> 偏差値

点数一点数の平均値

点数の偏差値=50+10× -

点数の標準偏差

数学 I <後> 第5回スクーリング教材 解答例

- データの分析 - [教科書: p136~p141]

データの代表値

- (1) 平均値=
 データの値の
 総和

 データの値の
 個数
- (2) 中央値 (メジアン) ··· データのすべての値を小さい方から順に並べとき、 中央 の順位にあるデータの値。
- (3) 最頻値 (モード)

データの散らばり(1)

- (1) 四分位数
 - ・第1四分位数…最小値から中央値の1つ前までの 中央値
 - ・第2四分位数… 中央値
 - ・第3四分位数…中央値の1つ後の値から最大値までの 中央値
- (2) 四分位範囲、四分位偏差
 - ・四分位範囲… 第 3 四分位数 第 1 四分位数
 - <td rowspan="2" color="block" color="block"

データの散らばり(2)

- (1) 偏差…データの各値- 平均値
- (2) 分散 =
 偏差
 2
 の和

 (全体のデータの個数)
- (3) 標準偏差 = 分散 5

例1 次のデータの平均値と中央値をそれぞれ求めなさい。

30 27 25 18 13 10 7 6

解) 平均値は

 $\frac{30 + 27 + 25 + 18 + 13 + 10 + 7 + 6}{8} = \frac{136}{8} = 17$

中央値 15.5

17

平均值

次にデータのすべての値を小さい方から順に並べると

6 7 10 13 18 25 27 30

であるから中央値は $\frac{13+18}{2}=15.5$

練習1 次のデータの平均値と中央値をそれぞれ求めなさい。

(3) 2 4 6 8 10

平均値は $\frac{2+4+6+8+10}{5} = \frac{30}{5} = 6$ 解)

> 次にデータの値は5個で、小さい順に並んでいる。 中央値は3番目のデータの値であるから 6

6 平均值

中央値 6

21 13 18 7 4 19 9 9 15 20 (4)

解)

 $\frac{21+13+18+7+4+19+9+9+15+20}{10} = \frac{135}{10} = 13.5$

次にデータのすべての値を小さい方から順に並べると

4 7 9 9 13 15 18 19 20 21

であるから中央値は $\frac{13+15}{2}=14$

13.5 平均值

中央值 14

例3 次のデータの第1四分位数、第2四分位数、第3四分位数をそれぞれ求めなさい。さらに、 四分位範囲と四分位偏差を求めなさい。

16 5 24 10 14 3 15 8 19 12

解) データのすべての値を小さい方から順に並べると

3 5 8 10 12 14 15 16 19 24

第2四分位数はデータの中央値であるから $\frac{12+14}{2}=13$

第1四分位数は前半5つのデータの中央値であるから 8 第3四分位数は後半5つのデータの中央値であるから 16 四分位範囲=第3四分位数-第1四分位数= 16-8=8 四分位偏差=四分位範囲 \div 2 = 8 \div 2 = 4

第1四分位数 8

第2四分位数 13

第3四分位数 16

四分位範囲 8

四分位偏差

練習2 次のデータの第1四分位数、第2四分位数、第3四分位数をそれぞれ求めなさい。さらに、 四分位範囲と四分位偏差を求めなさい。

(1) 1 2 3 5 6 8 <u>11 13 14 15 18</u>

- 第1四分位数 3
- 解) 第2四分位数はデータの中央値であるから8
- 第2四分位数
- 第1四分位数は前半5つのデータの中央値であるから 3
- 第3四分位数
- 第3四分位数は後半5つのデータの中央値であるから 14

四分位範囲

11

14

四分位範囲= 14-3=11

四分位偏差

5.5

(2) 23 42 28 33 31 24 45 28

四分位偏差=四分位範囲÷ $2 = 11 \div 2 = 5.5$

解) データのすべての値を小さい方から順に並べると

第 2 四分位数はデータの中央値であるから $\frac{28+31}{2}$ = 29.5

第2四分位数 29.5

第 1 四分位数は前半 4 つのデータの中央値より $\frac{24+28}{2} = 26$

第3四分位数 37.5

第3四分位数は後半4つのデータの中央値より $\frac{33+42}{2}$ =37.5

四分位範囲

11.5

四分位節用= 37.5-26 = 11.5

四分位偏差

5.75

四分位偏差=四分位範囲÷ $2 = 11.5 \div 2 = 5.75$

- 例 3 5 個のデータ 3 7 11 14 15 について次の各間に答えなさい。
- (1) このデータの平均値 xを求めなさい。

$$\widehat{x} = \frac{3+7+11+14+15}{5} = 10$$

х	x-x
3	-7
7	-3
11	1
14	4
15	5
計	0

- (2) 分散 s^2 を求めなさい。
- 解) 各値の偏差x-xは右の表のとおりであるから

$$s^{2} = \frac{(-7)^{2} + (-3)^{2} + 1^{2} + 4^{2} + 5^{2}}{5} = \frac{100}{5} = 20$$

(3) 標準偏差 s を求めなさい。ただし、 $\sqrt{5}=2.236$ とし、小数点第 3 位を四捨五入して答えなさい。

解)
$$s = \sqrt{20} = 2\sqrt{5} = 2 \times 2.236 = 4.47$$

練習3 6個のデータ 3.6 3.9 4.3 5.5 6.1 6.6 について次の各間に答えなさい。

(1) このデータの平均値 \bar{x} を求めなさい。

解)
$$\bar{x} = \frac{3.6 + 3.9 + 4.3 + 5.5 + 6.1 + 6.6}{6} = \frac{30}{6} = 5$$

- (2) (1) で求めたxを用いて、右の表を完成しなさい。
- 解) 各値の偏差を求めると、右の表のようになる。

X	x - x
3.6	-1.4
3.9	-1.1
4.3	-0.7
5.5	0.5
6.1	1.1
6.6	1.6
計	0

(3) 右の表を利用して、分散 s^2 を求めなさい。

解)
$$s^2 = \frac{(-1.4)^2 + (-1.1)^2 + (-0.7)^2 + 0.5^2 + 1.1^2 + 1.6^2}{6} = \frac{7.68}{6} = 1.28$$

(4) 標準偏差 s を求めなさい。ただし、 $\sqrt{2}=1.414$ とし、小数第 3 位を四捨五入して答えなさい。

解)
$$s = \sqrt{1.28} = \sqrt{\frac{128}{100}} = \frac{8\sqrt{2}}{10} = \frac{4\sqrt{2}}{5} = 0.8 \times 10414 = 1.13$$

<参考> 偏差値

点数一点数の平均値

点数の標準偏差

数学 I <後> 第6回レポート用スクーリング教材

- 集合と論証 - [教科書: p 150~ p 158]

1. 集合とは

何が含まれるかがはっきり定まるような、ものの集まりを集合という。

[例1]次の集まりの中で、集合であるものを答えなさい。

(1) 大きい数の集まり

(2) 10以下の正の整数の集まり

[練習1] 次の集まりの中で、集合であるものを答えなさい。

(1) 1000以上2000以下の整数の集まり (2)5に近い数の集まり

集合の表し方、使われる用語や記号 一

例 1, 2, 303つの数の集合を $A = \{1, 2, 3\}$ で表す。

要素・・・・・集合を作っている個々のもの。この例では 1 ∈ A などと表す。

部分集合・・・B= $\{2, 3\}$ のとき、 $\underline{Bの要素はすべてAの要素}$ である。このとき、 \underline{B} は \underline{A} の部分集合であるといい、 \underline{B} \underline{C} \underline{A} で表す。

全体集合・・・考える対象のもの全体の集合。全体集合が指定されたときには、全体集合の要素だけを考える。

補集合・・・全体集合Uの部分集合Aに対して、Uの要素であってAの要素でないものの集合をAの補集合といい、 \overline{A} で表す。

[例2] $A = \{1, 3, 5, 7, 9\}$ とします。次の集合のうち、Aの部分集合をすべて答えなさい。

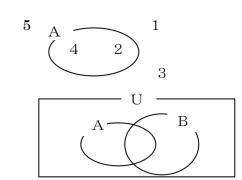
 $B = \{3, 5, 7\}$ $C = \{1, 2, 3\}$ $D = \{3, 4, 5, 6\}$ $E = \{7\}$

[例3]5以下の正の整数の集合を全体集合Uとします。

- (1) Uの部分集合で、要素が4個である集合をすべて答えなさい。
- (2) A= {2, 4} とするとき、Aの補集合を答えなさい。

IJ

(3) $\overline{B} = \{2, 3\}$ のとき、Bを求めなさい。



[練習3]6の正の約数の集合を全体集合Uとします。

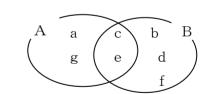
- (1) Uを、要素を書き並べて表しなさい。
- (2) 要素が3個であるような、Uの部分集合をすべて答えなさい。
- (3) A= {2, 3} とするとき、Aの補集合を答えなさい。
- (4) $\overline{B} = \{1, 3\}$ のとき、Bを求めなさい。

共通部分と和集合

共通部分・・・集合AとBのどちらにも含まれる要素の集合をAとBの共通部分といい、 $A \cap B$ で表す。上の例では $A \cap B = \{2, 6\}$ である。

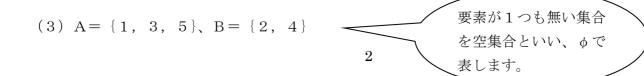
和集合・・・集合AとBの要素をすべて集めた集合をAとBの和集合といい、 $A \cup B$ で表す。上の例では $A \cup B = \{1, 2, 3, 4, 6, 8\}$ である。

[例4] 2つの集合A,BをA={a, c, e, g}、B={b, c, d, e, f} とします。 A \cap B、A \cup Bを求めなさい。



[練習4]次の2つの集合A、Bについて、 $A \cap B$ 、 $A \cup B$ を求めなさい。

- (1) A= $\{1, 4, 7, 10\}$, B= $\{4, 5, 6, 7\}$
- (2) Aは20以下の3の倍数全体の集合、Bは18の正の約数全体の集合



2. 命題とその真偽 -

命題・・・・正しいか正しくないかが決まる文や式のこと。

その命題が正しいとき、その命題は真である、または、真の命題である という。正しくないとき、その命題は偽である、または、偽の命題であ るという。

[例5]次の命題の真偽を調べなさい。

 $(1) 3^2 = 9$

- (2) 3は 5 より小さい。
- (3) 本校では74単位以上修得すれば卒業できる。
- (4) 6の倍数は偶数である。

[練習5] 次の命題の真偽を調べなさい。

 $(1) (-4)^2 = 16$

(2) 正三角形の内角はすべて60°である。

- (3) 9の倍数は奇数である。
- $(4) (a + b)^2 = a^2 + b^2$

条件 -

条件・・・変数を含む文や式で、その変数に値を代入したときに、初めて真偽が決まる もの。条件を p や q で表すことが多い。

注 以下、nはすべて自然数(正の整数)とする。

[例6]次の条件が真の場合、偽の場合の例を挙げなさい。

- 〔1〕条件p:x>4 真の場合の例 x=5やx=6 偽の場合の例 x=4やx=3
- (2) 条件q:nは偶数である。 真の場合の例 n=2やn=4 偽の場合の例 n=1やn=3

p、q を 2 つの条件とする。「p ならば q である」の形の命題を「 $p \rightarrow q$ 」で表す。 命題「 $p \rightarrow q$ 」が偽であることを示すには、「p が成り立つが q は成り立たない例」を**反例**として示す。

[練習6]次の命題の真偽を答えなさい。偽の場合は反例を挙げなさい。

- $(1) x > 3 \Rightarrow x > 5$
- $(2) x = 3 \Rightarrow x^2 = 9$

 $(3) x^2 = 9 \Rightarrow x = 3$

条件の否定

条件pに対して、「pでない」という条件をpの否定という。 pで表す。

[例7]次の条件の否定を答えなさい。

- (1) p:nは奇数である。
- $(2) q : x \ge 2$

[練習7] 次の条件の否定を答えなさい。

- (1) p:nは5の倍数である。
- (2) q : x < 2

命題の逆と対偶・

命題「p⇒q」に対し、

 $\dot{\mathcal{U}}$ ・・・命題「 $q \Rightarrow p$ 」を「 $p \Rightarrow q$ 」の逆という。

対偶・・・命題「 $\overline{q} \rightarrow \overline{p}$ 」を「 $p \rightarrow q$ 」の対偶という。<u>対偶の真偽は、元の命題の真偽と一致する。</u>

[例8] 次の命題の真偽を答えなさい。また、逆および対偶をつくり、その真偽を答えなさい。

- (1) nは6の倍数⇒nは3の倍数
- (2) n²は奇数⇒nは奇数

[練習8] 次の命題の真偽を答えなさい。また、逆および対偶をつくり、その真偽を答えなさい。

- (1) nは24の約数⇒nは6の約数
- (2) 2 n は 1 0 の 倍数 ⇒ n は 5 の 倍数

数学 I <後> 第6回レポート用スクーリング教材 解答例

- 集合と論証 [教科書: p 150~ p 158]
 - 1. 集合とは

何が含まれるかがはっきり定まるような、ものの集まりを集合という。

[例1]次の集まりの中で、集合であるものを答えなさい。

(1) 大きい数の集まり

((2))10以下の正の整数の集まり

[練習1] 次の集まりの中で、集合であるものを答えなさい。

(1) 1000 以上 2000 以下の整数の集まり (2) 5 に近い数の集まり

集合の表し方、使われる用語や記号 -

例 1, 2, 303つの数の集合を $A = \{1, 2, 3\}$ で表す。

要素・・・・・集合を作っている個々のもの。この例では 1 ∈ A などと表す。

部分集合・・・B= $\{2, 3\}$ のとき、 $\underline{Bの要素はすべてAの要素}$ である。このとき、 \underline{B} は \underline{A} の部分集合であるといい、 \underline{B} \underline{C} \underline{A} で表す。

全体集合・・・考える対象のもの全体の集合。全体集合が指定されたときには、全体集合の要素だけを考える。

補集合・・・全体集合Uの部分集合Aに対して、Uの要素であってAの要素でないものの集合をAの補集合といい、 \overline{A} で表す。

[例2] $A = \{1, 3, 5, 7, 9\}$ とします。次の集合のうち、Aの部分集合をすべて答えなさい。

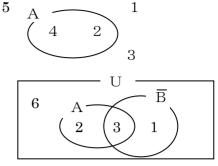
 $B = \{3, 5, 7\}$ $C = \{1, 2, 3\}$ $D = \{3, 4, 5, 6\}$ $E = \{7\}$ 答 BとE

[例3]5以下の正の整数の集合を全体集合Uとします。

- (1) Uの部分集合で、要素が4個である集合をすべて答えなさい。
 - 答 {1, 2, 3, 4}、{1, 2, 3, 5}、{1, 2, 4, 5}、{1, 3, 4, 5}、 {2, 3, 4, 5}
- (2) A= {2, 4} とするとき、Aの補集合を答えなさい。答 Ā= {1, 3, 5}

- **T**J

- (3) $\overline{B} = \{2, 3\}$ のとき、Bを求めなさい。 答 $B = \{1, 4, 5\}$ (\overline{B} の補集合はBである。) [練習 3] 6 の正の約数の集合を全体集合Uとします。
 - (1) Uを、要素を書き並べて表しなさい。答 U= {1, 2, 3, 6}



- (2) 要素が3個であるような、Uの部分集合をすべて答えなさい。 答 {1, 2, 3}、{1, 2, 6}、{1, 3, 6}、{2, 3, 6}
- (3) $A = \{2, 3\}$ とするとき、Aの補集合を答えなさい。 答 $\overline{A} = \{1, 6\}$
- (4) $\overline{B} = \{1, 3\}$ のとき、Bを求めなさい。 答 $B = \{2, 6\}$

共通部分と和集合

 $A = \{2, 4, 6, 8\}, B = \{1, 2, 3, 6\}$ $\geq l \neq t$.

共通部分・・・集合AとBのどちらにも含まれる要素の集合をAとBの共通部分といい、 $A \cap B$ で表す。上の例では $A \cap B = \{2, 6\}$ である。

和集合・・・集合AとBの要素をすべて集めた集合をAとBの和集合といい、 $A \cup B$ で表す。上の例では $A \cup B = \{1, 2, 3, 4, 6, 8\}$ である。

- [例4] 2つの集合A、BをA={a, c, e, g}、B={b, c, d, e, f} とします。 $A \cap B$ 、 $A \cup B$ を求めなさい。
 - 答 $A \cap B = \{c, e\}$ $A \cup B = \{a, b, c, d, e, f, g\}$

[練習4]次の2つの集合A、Bについて、A \cap B、A \cup Bを求めなさい。

(2) $A = \{1, 4, 7, 10\}, B = \{4, 5, 6, 7\}$

答 $A \cap B = \{4, 7\}, A \cup B = \{1, 4, 5, 6, 7, 10\}$

- (2) Aは20以下の3の倍数全体の集合、Bは18の正の約数全体の集合 $A = \{3, 6, 9, 12, 15, 18\}, B = \{1, 2, 3, 6, 9, 18\}$ だから、 答 $A \cap B = \{3, 6, 9, 18\}, A \cup B = \{1, 2, 3, 6, 9, 12, 15, 18\}$
- (3) $A = \{1, 3, 5\}, B = \{2, 4\}$

要素が1つも無い集合 を空集合といい、φで 表します。

g

答 $A \cap B = \emptyset$ 、 $A \cup B = \{1, 2, 3, 4, 5\}$

2. 命題とその真偽 -

命題・・・・正しいか正しくないかが決まる文や式のこと。

その命題が正しいとき、その命題は真である、または、真の命題である という。正しくないとき、その命題は偽である、または、偽の命題であ るという。

[例5]次の命題の真偽を調べなさい。

 $(1) 3^2 = 9$

(2) - 3 は - 5 より小さい。

答真

答偽

(3) 本校では74単位以上修得すれば卒業できる。

答偽

(4) 6の倍数は偶数である。

答 真

[練習5] 次の命題の真偽を調べなさい。

 $(1) (-4)^2 = 16$

(2) 正三角形の内角はすべて60°である。

答真

答真

 $(4) (a + b)^2 = a^2 + b^2$

(3) 9の倍数は奇数である。

9の信数は可数 (める)

答 偽

答偽

条件 -

条件・・・変数を含む文や式で、その変数に値を代入したときに、初めて真偽が決まる もの。条件を p や g で表すことが多い。

注 以下、nはすべて自然数(正の整数)とする。

[例6]次の条件が真の場合、偽の場合の例を挙げなさい。

(1) 条件 p: x > 4 真の場合の例 x = 5 や x = 6 偽の場合の例 x = 4 や x = 3

(2) 条件q:nは偶数である。 真の場合の例 n=2やn=4 偽の場合の例 n=1やn=3

p、q を 2 つの条件とする。「p ならば q である」の形の命題を「 $p \rightarrow q$ 」で表す。 命題「 $p \rightarrow q$ 」が偽であることを示すには、「p が成り立つが q は成り立たない例」を**反例**として示す。

[練習6]次の命題の真偽を答えなさい。偽の場合は反例を挙げなさい。

(1) $x > 3 \rightarrow x > 5$ 答 偽 反例はx = 4

 $(2) x = 3 \Rightarrow x^2 = 9$

答真

(3) $x^2 = 9 \Rightarrow x = 3$ 答 偽 反例はx = -3

条件の否定

条件pに対して、「pでない」という条件をpの否定という。 pで表す。

[例7]次の条件の否定を答えなさい。

(1) p:nは奇数である。

答 (nは奇数でない。) nは偶数である。

 $(2) q : x \ge 2$

答 x < 2

2つの数x, 2の大小関係は、

x > 2, x = 2, x < 2

03通りです。 $x \ge 2$ は

x > 2 または x = 2

なので、この否定はx<2となります。

[練習7] 次の条件の否定を答えなさい。

(1) p:nは5の倍数である。

答 nは5の倍数でない。(nは5で割り切れない。)

(2) q : x < 2

答 x ≥ 2

命題の逆と対偶

命題「p⇒q」に対し、

 $\dot{\mathcal{D}}$ ・・・命題「 $q \rightarrow p$ 」を「 $p \rightarrow q$ 」の逆という。

対偶・・・命題「 $\overline{q} \rightarrow \overline{p}$ 」を「 $p \rightarrow q$ 」の対偶という。<u>対偶の真偽は、元の命題の真偽と一致する。</u>

[例8] 次の命題の真偽を答えなさい。また、逆および対偶をつくり、その真偽を答えなさい。

(1) nは6の倍数⇒nは3の倍数

答真

逆は「nは3の倍数 \rightarrow nは6の倍数」で、偽(反例はn=3) 対偶は「nは3の倍数でない \rightarrow nは6の倍数でない」で、真

(2) n²は奇数⇒nは奇数

答真

逆は「n は奇数 $\rightarrow n^2$ は奇数」で、真 対偶は「n は偶数 $\rightarrow n^2$ は偶数」で、真

[練習8] 次の命題の真偽を答えなさい。また、逆および対偶をつくり、その真偽を答えなさい。

(1) nは24の約数⇒nは6の約数

答 偽(反例はn=12)

逆は「nは6の約数⇒nは24の約数」で、真

(2) 2 n は 1 0 の 倍数 ⇒ n は 5 の 倍数

答 真

逆は「nは5の倍数 \rightarrow 2nは10の倍数」で、真 対偶は「nは5の倍数でない \rightarrow 2nは10の倍数でない」で、真